H.E.R IVF


Human Egg Reconstitution
in Vitro Fertilization

References

  • 1. Briggs, R. and T.J. King, Transplantation of Living Nuclei From Blastula Cells into Enucleated Frogs' Eggs. Proc Natl Acad Sci U S A, 1952. 38(5): p. 455-63.
  • 2. Gurdon, J.B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol, 1962. 10: p. 622-40.
  • 3. Campbell, K.H., et al., Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996. 380(6569): p. 64-6.
  • 4. Yang, X., et al., Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet, 2007. 39(3): p. 295-302.
  • 5. Ethics Committee of the American Society for Reproductive Medicine. Electronic address, A.a.o. and M. Ethics Committee of the American Society for Reproductive, Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion. Fertil Steril, 2016. 105(4): p. e1-4.
  • 6. Gurdon, J., Harveian Oration 2014: Stem cells and cell replacement prospects. Clin Med (Lond), 2015. 15(2): p. 160-7.
  • 7. Gao, T., et al., Nuclear reprogramming: the strategy used in normal development is also used in somatic cell nuclear transfer and parthenogenesis. Cell Res, 2007. 17(2): p. 135-50.
  • 8. Halley-Stott, R.P., V. Pasque, and J.B. Gurdon, Nuclear reprogramming. Development, 2013. 140(12): p. 2468-71.
  • 9. Apostolou, E. and K. Hochedlinger, Chromatin dynamics during cellular reprogramming. Nature, 2013. 502(7472): p. 462-71.
  • 10. Guo, G., et al., Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports, 2016. 6(4): p. 437-46.
  • 11. Brook, F.A. and R.L. Gardner, The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A, 1997. 94(11): p. 5709-12.
  • 12. Nichols, J. and A. Smith, Naive and primed pluripotent states. Cell Stem Cell, 2009. 4(6): p. 487-92.
  • 13. Tachibana, M., et al., Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 2013. 153(6): p. 1228-38.
  • 14. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
  • 15. Stadtfeld, M. and K. Hochedlinger, Induced pluripotency: history, mechanisms, and applications. Genes Dev, 2010. 24(20): p. 2239-63.
  • 16. Yamanaka, S. and H.M. Blau, Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010. 465(7299): p. 704-12.
  • 17. Liu, H., et al., Ooplasmic Influence on Nuclear Function During the Metaphase II-Interphase Transition in Mouse Oocytes. Biology of Reproduction, 2001. 65(6): p. 1794-1799.
  • 18. Liu, H., et al., Reconstruction of mouse oocytes by germinal vesicle transfer: maturity of host oocyte cytoplasm determines meiosis. Human Reproduction, 1999. 14(9): p. 2357-2361.
  • 19. Zhang, J. and H. Liu, Cytoplasm replacement following germinal vesicle transfer restores meiotic maturation and spindle assembly in meiotically arrested oocytes. Reprod Biomed Online, 2015. 31(1): p. 71-8.
  • 20. Wakayama, T. and R. Yanagimachi, The first polar body can be used for the production of normal offspring in mice. Biol Reprod, 1998. 59(1): p. 100-4.
  • 21. Wang, T., et al., Polar body genome transfer for preventing the transmission of inherited mitochondrial diseases. Cell, 2014. 157(7): p. 1591-604.
  • 22. Tachibana, M., et al., Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature, 2009. 461(7262): p. 367-72.
  • 23. Wakayama, T., Y. Hayashi, and A. Ogura, Participation of the female pronucleus derived from the second polar body in full embryonic development of mice. J Reprod Fertil, 1997. 110(2): p. 263-6.
  • 24. Wei, Y., et al., Polar bodies in assisted reproductive technology: current progress and future perspectives. Biol Reprod, 2015. 92(1): p. 19.
  • 25. Zhang, J., Revisiting germinal vesicle transfer as a treatment for aneuploidy in infertile women with diminished ovarian reserve. J Assist Reprod Genet, 2015. 32(2): p. 313-7.
  • 26. Zhang, J., et al., Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online, 2017. 34(4): p. 361-368.
  • 27. Zhang, S.P., et al., Polar body transfer restores the developmental potential of oocytes to blastocyst stage in a case of repeated embryo fragmentation. J Assist Reprod Genet, 2017. 34(5): p. 563-571.
  • 28. Ma, H., et al., Functional Human Oocytes Generated by Transfer of Polar Body Genomes. Cell Stem Cell, 2017. 20(1): p. 112-119.
  • 29. Craven, L., et al., Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease. Nature, 2010. 465(7294): p. 82-5.
  • 30. Wolf, D.P., N. Mitalipov, and S. Mitalipov, Mitochondrial replacement therapy in reproductive medicine. Trends Mol Med, 2015. 21(2): p. 68-76.
  • 31. Sato, A., et al., Gene therapy for progeny of mito-mice carrying pathogenic mtDNA by nuclear transplantation. Proc Natl Acad Sci U S A, 2005. 102(46): p. 16765-70.
  • 32. Liu, H., et al., The in vitro development of human zygote reconstructed by pronuclear transfer. Fertility and Sterility, 2015. 104(3).
  • 33. Lu, Z., et al., The impact of human oocyte reconstruction using meiosis II spindle transfer on the pre-implantation embryonic development. Fertility and Sterility, 2015. 104(3).
  • 34. Paull, D., et al., Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants. Nature, 2013. 493(7434): p. 632-7.
  • 35. Lin, T., et al., Chromosomes in the porcine first polar body possess competence of second meiotic division within enucleated MII stage oocytes. PLoS One, 2013. 8(12): p. e82766.
  • 36. Shi, Y., et al., Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov, 2017. 16(2): p. 115-130.
  • 37. Liu, H., Metaphase II nuclei generated by germinal vesicle transfer in mouse oocytes support embryonic development to term. Human Reproduction, 2003. 18(9): p. 1903-1907.
  • 38. Liu, H., J. Grifo, and L. Krey, Germinal vesicle transfer rescues nuclear maturation from the cytoplasmic defects present in vitro-aged oocytes. Fertility and Sterility, 2003. 80: p. 258-259.
  • 39. H. Liu, L.C.K., J. Zhang, J. A. Grifo., Normal live birth produced from preovulatory mouse oocytes reconstructed by germinal vesicle transfer. Fertil Steril, 2001. 76: p. S56.
  • 40. H. Liu, L.C.K., J. Zhang, J. A. and Grifo, The nuclear developmental capacity of mouse oocytes following cryopreservation at germinal vesicle stage. Fertil Steril, 2001. 76: p. S80.
  • 41. Liu, H., et al., In-vitro development of mouse zygotes following reconstruction by sequential transfer of germinal vesicles and haploid pronuclei. Hum Reprod, 2000. 15(9): p. 1997-2002.
  • 42. H. Liu, J.Z., J. A. Grifo, L. C. Krey, Evaluating the Competency of the Nucleus and Ooplasm of In Vitro Matured, Artificially Activated Oocytes. Fertil Steril, 2000. 74: p. S65-S66.
  • 43. Hui Liu, L. and J.Z. C. Krey, Hungchi Chang, Jamie Grifo, Germinal vesicle xeno-transfer between mouse and human oocytes a model to study ooplasmic influences on meiotic division. Fertil Steril, 2002. 76: p. S77.
  • 44. Chang, H.C., et al., Developmental incompetency of denuded mouse oocytes undergoing maturation in vitro is ooplasmic in nature and is associated with aberrant Oct-4 expression. Hum Reprod, 2005. 20(7): p. 1958-68.
  • 45. Zhang, J., et al., In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer. Fertil Steril, 1999. 71(4): p. 726-31.
  • 46. Zhang, J., et al., Pregnancy derived from human nuclear transfer. Fertility and Sterility, 2003. 80.
  • 47. Kang, E., et al., Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016. 540(7632): p. 270-275.
  • 48. Kamao, H., et al., Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2014. 2(2): p. 205-18.
  • 49. Mandai, M., et al., Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N Engl J Med, 2017. 376(11): p. 1038-1046.
  • 50. First-Ever CAR T-cell Therapy Approved in U.S. Cancer Discov, 2017.
  • 51. Mueller, K.T., et al., Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood, 2017.
  • 52. Ferrua, F. and A. Aiuti, Twenty-five years of gene therapy for ADA-SCID: from "bubble babies" to an approved drug. Hum Gene Ther, 2017.
  • 53. Elliott, H.R., et al., Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet, 2008. 83(2): p. 254-60.
  • 54. Schaefer, A.M., et al., Prevalence of mitochondrial DNA disease in adults. Ann Neurol, 2008. 63(1): p. 35-9.
  • 55. Gorman, G.S., et al., Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol, 2015. 77(5): p. 753-9.
  • 56. Krey, L., et al., Fertility and maternal age strategies to improve pregnancy outcome. Ann N Y Acad Sci, 2001. 943: p. 26-33.
  • 57. Webster, A. and M. Schuh, Mechanisms of Aneuploidy in Human Eggs. Trends Cell Biol, 2017. 27(1): p. 55-68.
  • 58. Nagaoka, S.I., T.J. Hassold, and P.A. Hunt, Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet, 2012. 13(7): p. 493-504.
  • 59. Wang, Z.B., H. Schatten, and Q.Y. Sun, Why is chromosome segregation error in oocytes increased with maternal aging? Physiology (Bethesda), 2011. 26(5): p. 314-25.
  • 60. Chian, R.C., W.M. Buckett, and S.L. Tan, In-vitro maturation of human oocytes. Reprod Biomed Online, 2004. 8(2): p. 148-66.
  • 61. Kuliev, A., et al., Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reprod Biomed Online, 2011. 22(1): p. 2-8.
  • 62. Fragouli, E., et al., The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol Hum Reprod, 2011. 17(5): p. 286-95.
  • 63. Pacchierotti, F., et al., Gender effects on the incidence of aneuploidy in mammalian germ cells. Environ Res, 2007. 104(1): p. 46-69.
  • 64. Gianaroli, L., et al., Predicting aneuploidy in human oocytes: key factors which affect the meiotic process. Hum Reprod, 2010. 25(9): p. 2374-86.
  • 65. Verlinsky, Y., et al., Prevention of age-related aneuploidies by polar body testing of oocytes. J Assist Reprod Genet, 1999. 16(4): p. 165-9.
  • 66. Handyside, A.H., et al., Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation. Eur J Hum Genet, 2012. 20(7): p. 742-7.
  • 67. Jones, K.T. and S.I.R. Lane, Molecular causes of aneuploidy in mammalian eggs. Development, 2013. 140(18): p. 3719-3730.
  • 68. Duncan, F.E., et al., Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell, 2012. 11(6): p. 1121-4.
  • 69. Chiang, T., et al., Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Curr Biol, 2010. 20(17): p. 1522-8.
  • 70. Lagirand-Cantaloube, J., et al., Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Sci Rep, 2017. 7: p. 44001.
  • 71. Burkhardt, S., et al., Chromosome Cohesion Established by Rec8-Cohesin in Fetal Oocytes Is Maintained without Detectable Turnover in Oocytes Arrested for Months in Mice. Curr Biol, 2016. 26(5): p. 678-85.
  • 72. Toth, A. and R. Jessberger, Oogenesis: Ageing Oocyte Chromosomes Rely on Amazing Protein Stability. Curr Biol, 2016. 26(8): p. R329-31.
  • 73. Revenkova, E., et al., Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr Biol, 2010. 20(17): p. 1529-33.
  • 74. Tachibana-Konwalski, K., et al., Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev, 2010. 24(22): p. 2505-16.
  • 75. Perkins, A.T., et al., Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A, 2016. 113(44): p. E6823-E6830.
  • 76. Park, Y.S., et al., Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes. Histochem Cell Biol, 2016. 146(3): p. 281-8.
  • 77. Cheng, J.M., et al., Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice. Cell Cycle, 2016. 15(18): p. 2454-63.
  • 78. Spits, C., et al., Chromosome constitution of human embryos generated after in vitro maturation including 3-isobutyl-1-methylxanthine in the oocyte collection medium. Hum Reprod, 2015. 30(3): p. 653-63.
  • 79. Shirasawa, H. and Y. Terada, In vitro maturation of human immature oocytes for fertility preservation and research material. Reproductive Medicine and Biology, 2017. 16(3): p. 258-267.
  • 80. Fesahat, F., et al., The effects of different types of media on in vitro maturation outcomes of human germinal vesicle oocytes retrieved in intracytoplasmic sperm injection cycles. Clin Exp Reprod Med, 2017. 44(2): p. 79-84.
  • 81. Khalili, M.A., et al., Contribution of human oocyte architecture to success of in vitro maturation technology. Iran J Reprod Med, 2013. 11(1): p. 1-10.
  • 82. Imesch, P., et al., Developmental potential of human oocytes matured in vitro followed by vitrification and activation. J Ovarian Res, 2013. 6: p. 30.
  • 83. Trounson, A., C. Anderiesz, and G. Jones, Maturation of human oocytes in vitro and their developmental competence. Reproduction, 2001. 121(1): p. 51-75.
  • 84. Li, G.P., et al., Mouse-rabbit germinal vesicle transfer reveals that factors regulating oocyte meiotic progression are not species-specific in mammals. J Exp Zool, 2001. 289(5): p. 322-9.
  • 85. Kyogoku, H. and T.S. Kitajima, Large Cytoplasm Is Linked to the Error-Prone Nature of Oocytes. Dev Cell, 2017. 41(3): p. 287-298 e4.
  • 86. Tartia, A.P., et al., Cell volume regulation is initiated in mouse oocytes after ovulation. Development, 2009. 136(13): p. 2247-54.
  • 87. Inoue, A., et al., The perivitelline space-forming capacity of mouse oocytes is associated with meiotic competence. J Reprod Dev, 2007. 53(5): p. 1043-52.
  • 88. Baltz, J.M. and A.P. Tartia, Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update, 2010. 16(2): p. 166-76.
  • 89. Takeuchi, T., et al., A reliable technique of nuclear transplantation for immature mammalian oocytes. Hum Reprod, 1999. 14(5): p. 1312-7.
  • 90. Cui, L.B., X.Y. Huang, and F.Z. Sun, Transfer of germinal vesicle to ooplasm of young mice could not rescue ageing-associated chromosome misalignment in meiosis of oocytes from aged mice. Hum Reprod, 2005. 20(6): p. 1624-31.
  • 91. Liu, L. and D.L. Keefe, Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod, 2004. 71(5): p. 1724-9.
  • 92. Cha, K.Y., et al., Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril, 1991. 55(1): p. 109-13.
  • 93. Dahan, M.H., et al., Clinical definition paper on in vitro maturation of human oocytes. Hum Reprod, 2016. 31(7): p. 1383-6.
  • 94. Holubcova, Z., et al., Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science, 2015. 348(6239): p. 1143-7.
  • 95. Yu, Y., et al., Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Hum Reprod, 2012. 27(7): p. 2146-59.
  • 96. Sanchez, F., et al., An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum Reprod, 2017. 32(10): p. 2056-2068.
  • 97. Liu, J., et al., Successful in vitro maturation of human oocytes not exposed to human chorionic gonadotropin during ovulation induction, resulting in pregnancy. Fertil Steril, 1997. 67(3): p. 566-8.
  • 98. Barnes, F.L., et al., Production of embryos from in vitro-matured primary human oocytes. Fertil Steril, 1996. 65(6): p. 1151-6.
  • 99. Cavilla, J.L., et al., Human immature oocytes grow during culture for IVM. Hum Reprod, 2008. 23(1): p. 37-45.
  • 100. Walls, M.L., et al., Structural and morphologic differences in human oocytes after in vitro maturation compared with standard in vitro fertilization. Fertil Steril, 2016. 106(6): p. 1392-1398 e5.
  • 101. Brison, D.R., et al., Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod, 2004. 19(10): p. 2319-24.
  • 102. Jones, G.M., et al., Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod, 2008. 23(5): p. 1138-44.
  • 103. Coticchio, G., et al., Ultrastructure of human oocytes after in vitro maturation. Mol Hum Reprod, 2016. 22(2): p. 110-8.
  • 104. Farsi, M.M., N. Kamali, and M. Pourghasem, Embryological aspects of oocyte in vitro maturation. Int J Mol Cell Med, 2013. 2(3): p. 99-109.
  • 105. Son, W.Y., et al., Comparison of fertilization and embryonic development in sibling in vivo matured oocytes retrieved from different sizes follicles from in vitro maturation cycles. J Assist Reprod Genet, 2011. 28(6): p. 539-44.
  • 106. Son, W.Y., et al., Selection of the optimal day for oocyte retrieval based on the diameter of the dominant follicle in hCG-primed in vitro maturation cycles. Hum Reprod, 2008. 23(12): p. 2680-5.
  • 107. Cohen, J., et al., Ooplasmic transfer in mature human oocytes. Mol Hum Reprod, 1998. 4(3): p. 269-80.
  • 108. Kang, E., et al., Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations.Nature, 2016. 540(7632): p. 270-275.
  • 109. Yamada, M., et al., Genetic Drift Can Compromise Mitochondrial Replacement by Nuclear Transfer in Human Oocytes. Cell Stem Cell, 2016. 18(6): p. 749-54.